Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomech ; 164: 111953, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309133

RESUMO

Maintaining upright posture in quiet standing is an important skill that is often disrupted by stroke. Despite extensive study of human standing, current understanding is incomplete regarding the muscle coordination strategies that produce the ground-on-foot force (F) that regulates translational and rotational accelerations of the body. Even less is understood about how stroke disrupts that coordination. Humans produce sagittal plane variations in the location (center of pressure, xCP) and orientation (Fx/Fz) of F that, along with the force of gravity, produce sagittal plane body motions. As F changes during quiet standing there is a strong correlation between the xCP and Fx/Fz time-varying signals within narrow frequency bands. The slope of the correlation varies systematically with frequency in non-disabled populations, is sensitive to changes in both environmental and neuromuscular control factors, and emerges from the interaction of body mechanics and neural control. This study characterized the xCP versus Fx/Fz relationship as frequency-dependent Intersection Point (IP) heights for the paretic and non-paretic legs of individuals with history of a stroke (n = 12) as well as in both legs of non-disabled controls (n = 22) to reveal distinguishing motor coordination patterns. No inter-leg difference of IP height was present in the control group. The paretic leg IP height was lower than the non-paretic, and differences from control legs were in opposite directions. These results quantify disrupted coordination that may characterize the paretic leg balance deficit and non-paretic leg compensatory behavior, providing a means of monitoring balance impairment and a target for therapeutic interventions.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Perna (Membro)/fisiologia , Acidente Vascular Cerebral/complicações , , Extremidade Inferior , Fenômenos Mecânicos , Paresia/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...